Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 16: 4489-4501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849645

RESUMO

Purpose: The quality of life of worldwide adolescents has been seriously affected by depression. Notably, the inflammatory response is closely associated with the pathophysiology of depression. The present study applied a novel targeted proteomics technology, Olink proximity extension assay (PEA), to profile circulating immune-related proteins in adolescents with depression. Methods: In the present study, the expression levels of 92 inflammation-related proteins were compared between adolescents with depression (ADs) (n=15) and healthy controls (HCs) (n=15), using the OLINK PEA inflammation panel. We further validated 5 top proteins that were identified through KEGG and GO analyses between 40 HCs and 50 ADs, including CCL4, CXCL5, CXCL6, CXCL11, and IL-18 using enzyme linked immunosorbent assay (ELISA). Results: We identified 13 differentially expressed proteins between the two cohorts, including 5 up-regulated and 8 down-regulated proteins. Among them, the TRAIL protein levels were significantly negatively correlated with the HAMA-14 score (r=-0.538, p= 0.038), and the levels of transforming growth factor α (TGF-α) were significantly associated with a change in appetite (r = -0.658, p = 0.008). After validation by ELISA, CCL4, CXCL5, CXCL11, and IL-18 showed significant changes between ADs and HCs (p < 0.05), while CXCL6 showed an up-regulated tendency in ADs (p=0.0673). The pooled diagnostic efficacy (area under the curve [AUC]) of these five inflammation markers in clinical diagnosis for adolescent depression was 0.819 (95% CI: 0.735-0.904). Conclusion: We report a number of inflammation-related plasma biomarkers, which uncover a potential involvement of chemokines, cytokines, and cytokine receptors in adolescent depression. Their roles in the pathophysiology of depression need to be further elucidated.

2.
ACS Nano ; 17(18): 18037-18054, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713364

RESUMO

Diabetic nephropathy (DN), associated with high mobility and disability, is the leading cause of end-stage kidney disease worldwide. Dysfunction of the mammalian target of the rapamycin (mTOR) pathway and reactive oxygen species (ROS) activation in the glomeruli is the main hypnosis for DN progression. However, the use of mTOR inhibitors for DN treatment remains controversial. In this study, we built a multifunctional selective mechanistic target of rapamycin complex 1 (mTORC1) inhibiting nanoplatform (naming as ESC-HCM-B) that targets the release of mTOR and ROS inhibitors near podocytes, aiming to confirm whether combination therapy is an alternative method for DN treatment. The results showed that ESC-HCM-B achieved high drug loading because of the core mesoporous silica nanoparticles (MSNPs), and the enhanced biohomogeneous composite membrane endowed ESC-HCM-B with the characteristics of avoiding immune phagocytosis, automatic valve-type slow-release drug, and high stability. In vitro, the nanoplatform showed high efficiency in podocyte targeting but no significant cytotoxicity or apoptotic promotion. In particular, the quantum dots carried by ESC-HCM-B further amplified the effect of "nanoenzyme"; this mechanism reduced the ROS level in podocytes induced by high glucose, protected mitochondrial damage, and restored mitochondrial energy metabolism. In vivo, the nanoplatform specifically targeted the glomerular and podocyte regions of the kidney. After treatment, the nanoplatform significantly reduced urinary protein levels and delayed glomerulosclerosis in DN rats. This nanoplatform provides a safe and effective strategy for DN treatment.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Ratos , Animais , Podócitos/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Serina-Treonina Quinases TOR/uso terapêutico , Mamíferos/metabolismo , Diabetes Mellitus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...